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Abstract Clustering is an unsupervised learning technique that seeks “natural” groupings in

data. One form of data that has not been widely studied in the context of clustering is binary

data. A rich statistical framework for clustering binary data is the Bernoulli mixture model

for which there exists both Bayesian and non-Bayesian approaches. This paper reviews the

development and application of Bernoulli mixture models to clustering binary data.

1 Introduction

Cluster analysis is the separation of heterogeneous data into groups (or clusters) such that data

within the same cluster are similar and data between clusters are dissimilar. Clustering marks

one approach to unsupervised learning, seeking “natural” groupings in the data without reliance

on labeled examples to supervise classification. For example, a large and fast-growing document

database may aim to organize documents by topic without relying on a user to supervise the organi-

zation process. Clustering methods take many forms (Jain and Dubes, 1988), but for the purposes

of this paper we restrict attention to a finite mixture model approach as it allows for “the important

question of how many clusters there are in the data to be posed within the framework of standard

statistical theory” (Marriott, 1974).

Finite mixture models provide a convenient framework to model population heterogeneity and

facilitate clustering (McLachlan and Peel, 2000). Heterogeneity in a population is reframed as

arising from the pooling (or mixture) of a finite collection of relatively homogeneous subpopula-

tions. The problem lies, then, in unobserved heterogeneity (Böhning and Seidel, 2003), as it is not

known which, or possibly even how many, subpopulations are responsible for producing the data

observed. Using a variety of advanced statistical methods, one can estimate parameters of the sub-

populations (mixture components), the weighting given to these parameters (mixing weights), and,

if not known a priori, the number of subpopulations. With these estimates in hand, clustering sim-
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ply becomes a matter of using Bayes’ rule to classify data as belonging to the mixture components

most likely to have produced them.

Parameter estimation in mixture models is not cheap, however. In the first recorded use of

mixture models, Pearson (1894) sought method of moments estimators for a mixture of just two

normal probability densities by analytically solving for the roots of a ninth degree polynomial; a

herculean task in the 19th century. Mixture methodology therefore saw little development until the

late 20th century, when the introduction of the EM algorithm (Dempster et al., 1977) and increased

accessibility to high-speed computers made demonstrable impacts on the theory and application of

mixture models, and consequently cluster analysis, to a wide array of problems (McLachlan and

Peel, 2000). Moreover, development of Markov chain Monte Carlo methods have enabled the use

of Bayesian approaches to cluster analysis (Marin et al., 2005).

While literature on clustering via mixture models has expanded in recent decades, attention

has primarily been paid to modeling continuous data with Gaussian mixtures and applications

to binary data remain scarce (Bouguila, 2010). Binary data have a rich history in the areas of

text mining (Wang and Kabán, 2005) and topical document classification (Li, 2006), handwritten

digit recognition (Bishop, 2006; Grim et al., 2000), sequencing of packets in sensor networks

(Kamthe et al., 2011), and the identification of item sale association rules (Agrawal et al., 1994),

in addition to numerous biological applications in DNA computing (Fränti et al., 2003), human

genetics (Abel et al., 1993), and microbiology (Gyllenberg et al., 1997). Extending from the first

application of mixture models to binary data (Celeux and Govaert, 1991), we present a synthesis

of the leading classical and Bayesian approaches to unsupervised clustering within the specific

context of multivariate binary data.

The paper proceeds as follows. Section 2 presents the finite mixture model framework for

multivariate binary data. Section 3 describes standard approaches to parameter estimation when

the number of mixture components is known a priori. When the number of mixture components
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is unknown, methods in Section 4 provide means to select or estimate the number of components

in concert with classical and Bayesian estimation procedures. Finally, Section 5 surveys feature

selection techniques for high-dimensional binary data, and Section 6 summarizes and addresses

areas of future research in clustering binary data.

2 Bernoulli Mixture Model

Let X = (X1,X2, . . . ,XN) be a random sample of D-dimensional binary vectors. We aim

to partition X into K (possibly unknown but finite) clusters such that vectors within the same

cluster are similar and vectors between clusters are dissimilar. A vector Xn is assumed to arise

from a finite mixture density, f(Xn|K,p,Θ) =
∑K

k=1 pkq(Xn|θk), where q is the mixture com-

ponent density, Θ = (θ1, . . . ,θK) are mixture parameters with θk specific to component q(·|θk),

and p = (p1, . . . , pK) are the mixing weights,
∑K

k=1 pk = 1, pk > 0, k = 1, . . . , K. For conve-

nience, let Ψ = (p,Θ) and, when K may be unknown, ΨK = (K,Ψ). As Xn is binary and its

components assumed independent, i.e. Xn = (Xn1, . . . , XnD) with Xnd ∈ {0, 1}, d = 1, . . . , D

and Xnd1 |= Xnd2 , a natural choice for q is the multivariate Bernoulli distribution with independent

components. Letting θk = (θk1, . . . , θkD) for k = 1, . . . , K with 0 ≤ θkd ≤ 1, d = 1, . . . , D, the

Bernoulli mixture model (BMM) from which vectors Xn are independently drawn conditional on

ΨK is given by

f(Xn|ΨK) =
K∑
k=1

pk

D∏
d=1

θXnd
kd (1− θkd)1−Xnd , (1)

leading to a likelihood over N values of

L(ΨK |X) = f(X|ΨK) =
N∏
n=1

K∑
k=1

pk

D∏
d=1

θXnd
kd (1− θkd)1−Xnd . (2)

Furthermore, consider addressing the unobserved heterogeneity mentioned in Section 1. One

can imagine an unobserved Z = (Z1, . . . ,ZN) composed of latent membership (or allocation)

vectors defined so that for Zn = (Zn1, . . . , ZnK), Znk = 1 if Xn belongs to component k and

0 otherwise. That is, every Zn in Z records exactly which mixture component is responsible for
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producing Xn in X . Assume that Zn’s are independent conditional on K and p and express

Pr(Znk = 1|K,p) = pk so that f(Zn|K,p) =
∏K

k=1 p
Znk
k . In other words, Zn represents a single

draw from a Multinomial distribution with proportions p. Additionally, Znk = 1 in Zn records the

membership ofXn to component k, so f(Xn|Zn, K,Θ) =
∏K

k=1

[∏D
d=1 θ

Xnd
kd (1− θkd)1−Xnd

]Znk

.

Combining these two densities together with f(Xn,Zn|ΨK) = f(Xn|Zn, K,Θ)f(Zn|K,p) for

all n, the complete-case likelihood is given by

LC(ΨK |X,Z) = f(X,Z|ΨK) =
N∏
n=1

K∏
k=1

[
pk

D∏
d=1

θXnd
kd (1− θkd)1−Xnd

]Znk

, (3)

which will prove useful for clustering. The following two sections explore methods that address

parameter estimation and clustering when the number of components K is known (Section 3) and

unknown (Section 4).

3 Number of Components K is Known

In some situations, it is known ahead of time how many clusters should be formed from the

data. For example, Bishop (2006) assigns binary images of handwritten numerals 2, 3, and 4 into

one of K = 3 clusters (one for each digit), and Bouguila (2010) applies text mining to 4,199

university computer science department webpages to cluster pages into one of K = 4 possible

categories (Course, Faculty, Project, and Student). In situations such as these, joint estimation of

Ψ and Z in (3) is achieved through standard applications of the EM algorithm or Gibbs sampling.

The CEM algorithm is also an appropriate option.

3.1 EM Algorithm

Mixture models lend themselves nicely to the “complete-case” framework required by the EM

algorithm (McLachlan and Krishnan, 1997). The EM algorithm seeks maximization of (2) using

the complete-case likelihood (3) and an iterative Expectation (E-step) and Maximization (M-step)

procedure. Its application to a BMM is outlined in Algorithm 1. At iteration t of Algorithm 1,

Steps 3 & 4 mark the E-step of the algorithm, where Z∗(t)n is updated by EΨ(t−1)(Zn|X) and Steps
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5, 6, & 7 mark the M-step, where Ψ(t) is obtained by maximizing EΨ(t−1)(logLC(Ψ)|X) with

respect to Ψ. Because the EM algorithm converges only to a local maximum, it is recommended

one initialize the algorithm at many different starting values, iterate to convergence, and select the

best maximizer of (2) as one’s estimates. Note thatZ∗(t)n includes an asterisk because it is no longer

binary after the first iteration and instead represents “fuzzy” clustering in that it partially allocates

Xn to numerous clusters.

Algorithm 1: EM Algorithm for BMM (K fixed)

1 initialize Set t← 1. Choose starting values p(0) and θ(0)k = (θ
(0)
k1 , . . . , θ

(0)
kD) (for all k)

2 repeat

3 Compute snk = p
(t−1)
k

D∏
d=1

[
θ
(t−1)
kd

]Xnd
[
1− θ(t−1)kd

]1−Xnd

and sn· =
K∑
k=1

snk (for all n, k)

4 Assign Z∗(t)n ← Sn with Sn = (sn1, . . . , snK)/sn· (for all n)

5 Compute uk =
N∑
n=1

Z
∗(t)
nk and vkd =

N∑
n=1

Z
∗(t)
nk Xnd (for all k, d)

6 Assign p(t) ← u/N with u = (u1, . . . , uK)

7 Assign θ(t)k ← vk/uk with vk = (vk1, . . . , vkD) (for all k)

8 Assign t← t+ 1

9 until | logL(Ψ(t)|X)− logL(Ψ(t−1)|X)| < ε, where ε is small

3.1.1 Bayesian Extension

The EM algorithm is easily altered to converge to maximum a posteriori (MAP) estimates

rather than maximum likelihood estimates. That is, simply modify the ML approach (Algorithm 1)

which maximizes (2) (or, equivalently, maximizes logL) to accommodate a MAP approach by

seeking maximization of logL + log π(Ψ), where π(Ψ) denotes a prior distribution on Ψ. For

binary data, Ripley (1996) supports use of priors to prevent overfitting in the case of small N .

3.2 CEM Algorithm

A slight modification to the EM algorithm produces the Classification-EM (CEM) algorithm

(Celeux and Govaert, 1992) which maximizes the classification maximum likelihood (3) (Symons,
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1981). The CEM algorithm introduces Classification (C-step) between Steps 3 & 4 (E-step) and

Steps 5–7 (M-step) of Algorithm 1. Here, rather than the “fuzzy” classification of Xn to K clus-

ters designated by Z∗n, a “hard” classification is made to place Xn into its single most likely

cluster of origin. Specifically, at iteration t, assign Z(t)
n ← (Z

(t)
n1 , . . . , Z

(t)
nK) such that Z(t)

nk = 1

if max(Z
∗(t)
n ) = Z

∗(t)
nk and 0 otherwise. Then Step 5 is modified so that uk =

∑N
n=1 Z

(t)
nk and

vkd =
∑N

n=1 Z
(t)
nkXnd. For binary data, the CEM algorithm is found to perform better than the EM

algorithm for small sample sizes with well-separated mixture components (Govaert and Nadif,

1996) but is outperformed by the EM algorithm in most other scenarios and therefore sees little

use.

3.3 Gibbs Sampling

In a Bayesian context, Ψ is treated as random. For a prior distribution π(Ψ) placed on Ψ and

complete-case likelihood (3) the posterior distribution is given by

π(Ψ|X,Z) ∝ π(Ψ)f(X,Z|Ψ) = π(p)f(Z|p) · π(Θ)f(X|Z,Θ) (4)

where individual parameter priors are taken to be independent such that π(Ψ) = π(p)π(Θ).

3.3.1 Conjugate Priors & Posterior Sampling

We seek conjugate priors so that the marginal posterior distributions of p and Θ share the same

distributional form as their respective priors. The vector of mixing weights p lies on a (K − 1)-

dimensional simplex, so a logical prior choice is the Dirichlet distribution (with hyperparameters

α1, . . . , αK) which is conjugate to the Multinomial distribution assumed for eachZn. Furthermore,

for all k and d, θkd in θk is chosen to follow a Beta distribution (with hyperparameters γkd and δkd)

to achieve conjugacy with the univariate Bernoulli distributions of each Xnd. Thus, over all k and
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d, the priors chosen are

π(p) =
Γ (α0)
K∏
k=1

Γ(αk)

K∏
k=1

pαk−1
k and π(θkd) =

Γ(γkd + δkd)

Γ(γkd)Γ(δkd)
θγkd−1kd (1− θkd)δkd−1, (5)

where α0 =
∑K

k=1 αk, yielding a posterior distribution

π(Ψ|X,Z) ∝
N∏
n=1

K∏
k=1

[
pZnk+αk−1
k

D∏
d=1

θZnkXnd+γkd−1
kd (1− θkd)Znk(1−Xnd)+δkd−1

]
(6)

∝
K∏
k=1

[
puk+αk−1
k

D∏
d=1

θvkd+γkd−1kd (1− θkd)uk−vkd+δkd−1
]

(7)

where uk =
∑N

n=1 Znk and vkd =
∑N

n=1 ZnkXnd. If there is no prior information to help dis-

tinguish the K components from one another, it is common to select α1 = · · · = αK = 1 and

γ11 = · · · = γKD = δ11 = · · · = δKD = 1 so that the priors are deemed symmetric.

Algorithm 2: Gibbs Sampling for BMM (K fixed)

1 initialize Set t← 1. Choose starting values p(0) and θ(0)k = (θ
(0)
k1 , . . . , θ

(0)
kD) (for all k)

2 repeat

3 Compute snk = p
(t−1)
k

D∏
d=1

[
θ
(t−1)
kd

]Xnd
[
1− θ(t−1)kd

]1−Xnd

and sn· =
K∑
k=1

snk (for all n, k)

4 Generate Z(t)
n from Multinomial(1,Sn) with Sn = (sn1, . . . , snK)/sn· (for all n)

5 Compute uk =
N∑
n=1

Z
(t)
nk and vkd =

N∑
n=1

Z
(t)
nkXnd (for all k, d)

6 Generate p(t) from Dirichlet(α1 + u1, . . . , αK + uK)

7 Generate θ(t)kd from Beta(γkd + vkd, δkd + uk − vkd) (for all k, d)

8 Assign t← t+ 1

9 until t is suitably large

Joint samples are drawn from the posterior distribution (7) using Markov chain Monte Carlo

(MCMC) methods popularized in the seminal paper by Gelfand and Smith (1990) and preceded

by “data augmentation” in Tanner and Wong (1987). Diebolt and Robert (1994) proposed a Gibbs

sampler for mixture models which we make use of here for a BMM. The sampling scheme is
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presented in Algorithm 2. After obtaining a suitably large number of samples from the posterior,

point estimates for p and each θkd are obtained by evaluating their posterior mean and each Zn is

estimated via its posterior mode.

3.3.2 Label-Switching Problem

If symmetric priors are selected for the parameters, then a major issue that must be tackled

in Bayesian estimation under the mixture model framework is the label-switching problem. Let

ν denote a permutation of 1, . . . , K with corresponding parameter permutation given by ν(Ψ) =

((pν(1), . . . , pν(K)), (θν(1), . . . ,θν(K))). Then the mixture likelihood (2) is the same for all K! pos-

sible ν(Ψ), or, stated another way, is invariant to switching of the component labels (Redner and

Walker, 1984). If there is no prior information to distinguish between the parameters of theK mix-

ture components, then the resulting posterior surface will retain this symmetry in the form of K!

modes, none of which uniquely identify the mixing weights or mixture parameters of the individ-

ual components. Therefore, as the MCMC sampler traverses the posterior surface and visits many

different modes the labels of the components permute. Without accounting for these permutations,

naïve analysis of the resulting posterior sample yields posterior means p ≈ (1/K, . . . , 1/K) and

θ1 ≈ . . . ≈ θK which are likely far from the truth.

There are relatively few satisfactory solutions to this problem (Stephens, 2000b). An ad hoc

approach is to simply impose ordering constraints on the parameters (e.g. p1 ≤ . . . ≤ pk) to foster

identifiability during the sampling process. Despite their intuitive appeal, ordering constraints

have proven largely ineffective because they produce biased posterior samples and significantly

slow convergence of the MCMC sampler (West, 1997; Celeux et al., 2000). To avoid hampering

convergence, alternate approaches advocate running the MCMC sampler on the unconstrained

parameter space and applying a relabeling algorithm to the posterior samples.

Stephens (2000b) defines a relabeling algorithm for clustering inference by means of the Kullback-

Leibler divergence which measures the difference between two probability distributions. Mini-
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mizing the expected loss from reporting one probability distribution over another yields optimal

permutations (or relabelings) ν1, . . . , νT corresponding to posterior samples Ψ(1), . . . ,Ψ(T ) which

solve the label-switching problem by placing ν1(Ψ(1)), . . . , νT (Ψ(T )) in the same symmetric mode.

Although easy to implement, the algorithm can be demanding on both storage and computa-

tion time. Every sweep t = 1, . . . , T of Steps 3–8 of Algorithm 2 must store not only the sampled

Ψ(t) but also the respective classification probabilities S1(Ψ
(t)), . . . ,SN(Ψ(t)) (as defined in Al-

gorithm 2). To circumvent this issue, Stephens (2000b) formulates an “on-line” version of the

algorithm following Celeux (1998) that, at iteration t, optimally relabels Ψ(t) with νt and discards

S1(Ψ
(t)), . . . ,SN(Ψ(t)) before continuing to iteration t + 1. With respect to computation time,

the most straightforward way to find νt in Step 5 is to simply try all possible K! permutations

and select the best minimizer, but this method is not feasible for decent-sized K. Thankfully, the

problem can be reformulated as an integer programming problem (Stephens, 2000b, Appendix A)

for which quicker solutions exist (Taha, 2007).

4 Number of Components K is Unknown

Often it is not known how many clusters K are inherent in the available data. The methods

available to handle unknown K can be broadly classified into three categories: hypothesis testing,

information criteria, and fully Bayesian estimation. Many of these methods build directly off of

the methods available for fixed K in Section 3.

4.1 Hypothesis Testing

The following two methods pose the selection of K in a familiar hypothesis testing framework.

4.1.1 Likelihood Ratio Test

The standard solution to finding the number of clusters in a classical setting is to conduct a

series of likelihood ratio tests (LRTs) of the sufficiency of k clusters vs. k+1 clusters to adequately

group the data. Concretely, for k = 1, 2, . . ., hypotheses H0 : K = k vs. H1 : K = k + 1, and

LRT test statistic λ, we examine −2 log λ = 2[logL(Ψ̂k+1|X)− logL(Ψ̂k|X)], where Ψ̂k+1 and
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Ψ̂k denote the maximum likelihood estimates of ΨK obtained by the EM algorithm under H1 and

H0 respectively. Large values of −2 log λ suggest k clusters are not sufficient to properly model

the heterogeneity observed in X . Unfortunately, “large values” is not so easy to define because

−2 log λ violates regularity conditions under the mixture model framework and thus does not retain

its usual asymptotic χ2 distribution (Titterington et al., 1985).

A widely adopted adaptation to this problem is use of a parametric bootstrapping approach

to approximate the distribution of −2 log λ under H0 (McLachlan, 1987). The set of values

{−2 log λ(1), . . . ,−2 log λ(T )} obtained by Algorithm 3 approximate the true null distribution of

−2 log λ and lead to an approximate p-value of
∑T

t=1 I(−2 log λ < −2 log λ(t))/T , where I(·)

denotes the indicator function. If H0 is rejected, k is incremented by one and the LRT + Bootstrap

procedure is repeated; otherwise, k is deemed sufficient to group the observed data and K = k is

adopted. Clearly, this method carries with it significant computational complexity, especially when

Algorithm 3 is required to run for several hypothesis tests over increasing k. On this note, Smyth

(2000) suggests exploiting the independence between bootstrap samples by evaluating Steps 3–6

of Algorithm 3 in parallel.

Algorithm 3: Parametric Bootstrap Sampling for Mixture Models (McLachlan, 1987)

1 initialize Set t← 1. Denote by Ψ̂0 the ML estimate of Ψ under H0 : K = k and dataX .

2 repeat

3 Generate a bootstrap sampleX(t) = {X(t)
1 , . . . ,X

(t)
n } from (1) with Ψ = Ψ̂0.

4 Obtain ML estimates Ψ̂(t)
k and Ψ̂

(t)
k+1 forX(t) via the EM algorithm (Algorithm 1).

5 Compute −2 log λ(t) = 2[logL(Ψ̂
(t)
k+1|X(t))− logL(Ψ̂

(t)
k |X(t))]

6 Assign t← t+ 1

7 until t > (100/α)− 1 for α% significance level (McLachlan and Peel, 1997)

4.1.2 Bayes Factors

From a Bayesian perspective, testing H0 : K = k vs. H1 : K = k + 1 is accomplished by use

of Bayes factors (Kass and Raftery, 1995). Let B = f(X|K = k + 1)/f(X|K = k) denote the
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Bayes factor, where the marginal likelihood is given by

f(X|K) =

∫
L(Ψ|X, K)π(Ψ|K)dΨ. (8)

Cursory inspection of (2) and (5) suggest evaluating this integral is analytically intractable and

must be approximated (see Sections 4.2.2, 4.2.3). Large values ofB (roughly 2 logB > 2) provide

evidence in favor of H1 over H0 (Raftery, 1996). Lau and Green (2007) question the validity of

Bayes factors as a viable Bayesian approach to selecting K, stressing that no informative prior is

placed on K (H0 and H1 are favored equally a priori) and that reliable estimation of f(X|K) is

difficult and may be unrepresentative of the posterior surface in high-dimensional settings.

4.2 Information Criteria

Hypothesis testing methods and to-be-discussed fully Bayesian estimation methods can be very

computationally demanding, particularly in the machine learning fields of computer vision and

pattern recognition (Bouguila and Ziou, 2007). A response to this has been use of information

criteria to inform selection of a model. Criteria operate by producing some measure of model

quality, promoting models by their balance between maximizing the log-likelihood function and

minimizing the number of parameters included. The criteria presented here are diverse, but can

be shown to be closely related in the case of binary data (Li, 2006). Use of information criteria is

cautioned, however, as they violate regularity conditions under the mixture model framework and

therefore do not retain asymptotic optimality (Titterington et al., 1985).

4.2.1 Penalized Likelihood

A straightforward approach fits separate models for a collection of fixed K and selects the

“best” model with respect to some penalized likelihood criterion. For many criteria, a “best” model

is one that minimizes C(K) = −2Lmax(K) + 2ψη(K) with respect to K, where Lmax(K) =

logL(Ψ̂K |X) , η(K) is the degrees of freedom of a model with K clusters, and ψ is the penalty

term. Criteria for mixture models are plentiful and primarily differ by their choice of ψ (McLach-
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lan and Peel, 2000). Notable examples include the application of Akaike’s Information Crite-

rion (AIC) (Akaike, 1972) to mixture models by Bozdogan and Sclove (1984) with ψ = 1, and

Bayesian Information Criterion (BIC) (Schwarz, 1978) with ψ = 1
2

logN . Another criterion is

AIC3 (Bozdogan, 1983) with ψ = 3/2. In the specific case of binary data modeled by BMMs,

Nadif and Govaert (1998) rigorously compare these three criteria and the Normalized Entropy Cri-

terion (NEC) (Celeux and Soromenho, 1996) on their ability to accurately identify K and find that

AIC consistently performs the best of the four.

4.2.2 Coding-Based

A related approach can be found in the coding theory literature, where model selection is

reframed as finding the number of clusters “which minimizes the amount of information (measured

in bits, if base-2 logarithm is used, or in nits, if natural logarithm is adopted (Wallace et al., 2005))

needed to transmit X efficiently from a sender to a receiver” (Bouguila and Ziou, 2007). This

information compression is captured by the expected minimum message length (MML) (Baxter

and Oliver, 2000) and is commonly approximated by a variant of Laplace’s method (Kass and

Raftery, 1995) given by

− log f(X|K) ≈ − logL(Ψ̂)− log π(Ψ̂) +
1

2
log |I(Ψ̂,X)| − 1

2
M log(2π) (9)

where f(X|K) is as in (8), I(Ψ̂,X) is the observed Fisher information matrix, and M = K(D+

1) is the number of parameters to be estimated for a BMM. A “best” model with respect to K

is one that minimizes the approximate expected MML (9). Baxter and Oliver (2000) note that

I(Ψ̂,X) is difficult to compute for the form of the likelihood (2) and recommend substituting it

by the complete-data expected Fisher information matrix IC(Ψ) = E
{[

∂
∂Ψ

logLC(Ψ,X)
]2} via

(3). Similar coding-based criteria include minimum description length (MDL) (Rissanen, 1978)

and mixture minimum description length (MMDL) (Figueiredo et al., 1999).
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4.2.3 Stochastic Complexity & AutoClass

Approximated in (9) by Laplace’s method,− log f(X|K) is called stochastic complexity (Ris-

sanen, 1987) and measures the degree of information contained in the data X for a model with

K components. A competing approximation of stochastic complexity that has been widely used

for mixture models is the so-called AutoClass system developed by Cheeseman and Stutz (1996).

With conjugate priors selected (Section 3.3.1), their Bayesian classification system substitutes the

complete-case likelihood (3) for (2) in (8) to produce f(X,Z|K) given by

∫
LC(ΨK |X,Z)π(Ψ)dΨ =

∫
f(Z|K,p)π(p|K)dp

∫
f(X|Z, K,Θ)π(Θ|K)dΘ (10)

= f(Z|K)f(X|Z, K) (11)

where

f(Z|K) =
Γ(α0)

Γ(α0 +N)

K∏
k=1

Γ(αk + uk)

Γ(αk)
, (12)

f(X|Z, K) =
K∏
k=1

[
D∏
d=1

Γ(γkd + δkd)

Γ(γkd)Γ(δkd)

Γ(vkd + γkd)Γ(uk − vkd + δkd)

Γ(uk + γkd + δkd)

]
. (13)

The Cheeseman-Stutz approximation is therefore− log f(X|K) ≈ − log f(X,Z|K) and Au-

toClass selects the “best” model as that which minimizes (11) with respect to K. As it relates to

binary data, Gyllenberg et al. (1997) apply AutoClass to binary bacterial taxa data and find it

performs exceptionally well in selecting K.

Cheeseman and Stutz (1996) note that AutoClass benefits from a natural form of Occam’s razor,

as “priors always favor classifications with smaller numbers of classes, and do so overwhelmingly,

once the number of classes exceeds some small fraction of the database size.” This is a consequence

of the way the parameters influence the posterior through a tug-of-war between their multiplicative

priors and the marginal likelihood. Specifically, a new cluster k∗ under consideration introduces
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D new multiplicative priors π(θk∗1), . . . , π(θk∗D) to the posterior and increases the dimensionality

of π(p) by 1 due to the inclusion of pk∗ . These multiplicative priors always lower the marginal,

but the new parameters may raise the marginal. Thus, a cluster is deemed unnecessary if the

parameters do not raise the marginal by more than the priors lower the marginal. This behavior

favors classifications with smaller numbers of classes and therefore naturally prevents overfitting,

a feature lacking in the frequentist approach to clustering where the best partition achieved by

maximum likelihood is one in which every observation belongs to its own individual cluster.

4.3 Fully Bayesian Estimation

Several methods presented thus far operate within the Bayesian paradigm (Bayes factors,

MML, AutoClass), but are not considered fully Bayesian because they fix K and perform model

selection deterministically. Fully Bayesian estimation treats K too as random and supplements (4)

with a prior π(K) placed on K yielding the posterior distribution

π(ΨK |X,Z) ∝ π(K)π(p|K)f(Z|K,p)π(Θ|K)f(X|Z, K,Θ) (14)

from which joint samples are drawn. The prior π(K) is typically chosen as a Poisson(β) density

with mean β = 1 (Nobile, 2004), β = 3 (Phillips and Smith, 1996), or even β = 6 (Stephens,

2000a). Inference on K is made through its marginal posterior probabilities. In the following

sections, Kmax marks a pre-specified upper bound for K.

4.3.1 Reversible Jump MCMC

Proposed in Green (1995) and developed for mixture models in Richardson and Green (1997),

the reversible jump MCMC (RJMCMC) obtains joint posterior samples of Z, Ψ, and K by ap-

pending two trans-dimensional moves to each sweep of the standard mixture model Gibbs sampler

(Section 3.3, Algorithm 2): Combine/Split (CS) and Birth/Death (BD). In CS, an attempt is made

at random to decrease or increase K by combining two existing components into one or by split-

ting an existing component into two new components. In BD, an attempt is made to either create
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or destroy an empty component (i.e. a component to which no Xn are allocated by Z), but is not

dicussed here.

Suppose the CS step is initiated and the sampler randomly selects a combination move (pro-

vided K 6= 1). A pair of components (k1, k2) is chosen at random to combine together. In

univariate settings, the components must be chosen to be adjacent in their means, but dealing with

the adjacency condition is “very annoying” in multivariate settings and is largely ignored (Zhang

et al., 2004). A new component k∗ with mixing weight pk∗ and parameter vector θk∗ is created by

preserving the first two moments of the component distributions. For multivariate Bernoulli, this

simply equates to solving pk∗ and θk∗ satisfying

pk∗ = pk1 + pk2 , (15)

pk∗θk∗ = pk1θk1 + pk2θk2 . (16)

If a split were instead randomly selected (provided K 6= Kmax), then a component k∗ is selected at

random from the K available and split into components k1 and k2 with respective mixing weights

pk1 and pk2 given by (15), and parameter vectors θk1 and θk2 given by (16). As it stands, however,

the problem is ill-posed; the number of unknowns outweighs the number of equations. Richardson

and Green (1997) address this by filling the available degrees of freedom with random draws from

a Beta distribution. Hence, we draw b1 and b2 from Beta(2, 2) and define

pk1 = b1pk∗ pk2 = (1− b1)pk∗ (17)

θk1 = θk∗ − b2
√
θk∗(1− θk∗)

pk∗

pk1
θk2 = θk∗ + b2

√
θk∗(1− θk∗)

pk∗

pk2
. (18)

The proposed split or combine is accepted with probability min{1, R} and min{1, 1/R} re-
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spectively, with R given by

R =
π(∆

′
K |X)Pr(∆

′
K → ∆K)

π(∆K |X)f(b1)f(b2)Pr(∆K → ∆
′
K)

∣∣∣∣ ∂∆
′
K

∂(∆K , b1, b2)

∣∣∣∣ (19)

where f(bi) is the Beta(2, 2) pdf evaluated at bi, i = 1, 2, ∆K is the state of (Z,ΨK) in the

lower dimensional space (pre-split/post-combined), and ∆
′
K is the state of (Z,ΨK) in the higher

dimensional space (post-split/pre-combined). An inherent difficulty with RJMCMC is developing

the jumping moves (∆
′
K → ∆K or ∆K → ∆

′
K) between dimensional spaces for updates of K.

4.3.2 Allocation Sampler

Nobile and Fearnside (2007) present a MCMC scheme in the spirit of RJMCMC but having

integrated out Ψ from the model so that joint posterior draws are made on Z and K only. This

modification successfully avoids the need to invent “good” jumping moves as in RJMCMC. More-

over, it removes direct dependence on the dimensionality of the data D, making the so-called

allocation sampler particularly attractive for high-dimensional settings. It does, however, restrict

the choice of available priors, requiring priors on p and θkd such that they may be safely integrated

out of (14). For conjugate priors on p and θkd (Section 3.3.1), the posterior is

π(K|Z,X) =

∫
π(K,Ψ|X,Z)dΨ ∝ π(K)f(Z|K)f(X|Z, K) (20)

where f(Z|K) and f(X|Z, K) are given by (12) and (13) respectively. The sampling scheme is

outlined in Algorithm 4 (page 20).

One type of move (AE) is responsible for changing the number of components K as well

as allocation Z. AE (Absorb/Eject) is very similar to the reversible jump moves of Richardson

and Green (1997). Ejection (split) or absorption (combination) is randomly selected (provided

K 6= Kmax or K 6= 1, respectively) and accepted with respective probabilities min{1, R} or
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min{1, 1/R}, where

R =
π(K

′
,Z

′|X)

π(K,Z|X)
· Pr({K

′
,Z

′} → {K,Z})
Pr({K,Z} → {K ′ ,Z ′})

. (21)

and additional terms as defined in Algorithm 4.

The remaining moves (GS, M1, M2, M3) detail different ways one might re-allocateXn inX

between components. GS is as given in Algorithm 4. M1, M2, and M3, begin by randomly select-

ing two distinct components k1, k2 from {1, . . . , K}. The observations currently allocated to these

two components are then re-allocated in one of three ways to produce a new allocation Z ′ . M1

re-allocates individual observations with constant probability, with bk1 drawn from Beta(αk1 , αk2)

and every Xn in components k1 and k2 re-allocated to component k1 with probability bk1 and to

component k2 with probability 1− bk1 . M2 re-allocates grouped observations. If component k1 is

not empty (uk1 > 0), m is drawn randomly from {1, . . . , uk1} and m observations are randomly

selected from component k1 and re-allocated to component k2. Finally, M3 re-allocates individual

observations sequentially with observation-dependent probabilities. Its implementation is more

complex than the former two moves and its details left to Appendix A.2 of Nobile and Fearnside

(2007). A move is accepted with probability min{1, R} with

R =
π(K,Z

′|X)

π(K,Z|X)
·
[
Pr(Z

′ → Z)

Pr(Z → Z ′)

]
j

(22)

whereZ ′ marks the proposed reallocation and j = 1, 2, 3 indicate the form of Pr(Z ′ → Z)/Pr(Z →

Z
′
) taken for moves M1, M2, or M3, respectively.

5 Feature Weighting for High-Dimensional Data

For binary data, the components of Xn = (Xn1, . . . , XnD) represent the presence (1) or ab-

sence (0) of features d = 1, . . . , D. Many irrelevant features may harm clustering by introducing

excessive noise. The methods detailed in Sections 3 & 4 do not account for this and treat all
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features as informative. Inspired by feature weighting for Gaussian mixture models (Law et al.,

2004), Wang and Kabán (2005) address feature weighting for binary data by modifying the BMM

to account for features that are deemed uninformative. A feature d is uninformative if θ1d, . . . , θKd

do not tend to vary and, to reduce unnecessary noise, are better represented by a single parameter

λd (Novovic̀ová et al., 1996). The likelihood (2) is then repurposed as

L(ΨK ,λ, ρ1, . . . , ρD|X) =
N∏
n=1

K∑
k=1

pk

D∏
d=1

[
ρdθ

Xnd
kd (1− θkd)1−Xnd + (1− ρd)λXnd

d (1− λd)1−Xnd

]
,

(23)

where λ = (λ1, . . . , λD) and ρd = Pr(φd = 1) is the feature saliency of feature d with latent

variables φ = (φ1, . . . , φD) marking the relevant features (φd = 1 if feature d is relevant, 0

otherwise). As developed in Bouguila (2010), the complete-case likelihood (3) is modified to

include the latent φ so that LC(ΨK ,λ, ρ1, . . . , ρD|X,Z,φ) =

N∏
n=1

K∏
k=1

{
pk

D∏
d=1

[
ρdθ

Xnd
kd (1− θkd)1−Xnd

]φd [
(1− ρd)λXnd

d (1− λd)1−Xnd

]1−φd}Znk

. (24)

Feature selection is shown to improve clustering of binary data when K is taken as known

(Wang and Kabán, 2005). Placing conjugate Beta priors on ρ1, . . . , ρD, λ1, . . . , λD, Bouguila

(2010) uses (24), the Bayesian extension to the EM algorithm, and AutoClass to cluster high-

dimensional binary data with feature weighting when K is unknown, finding that downweighting

uninformative features can help better identify K. Most recently, Elguebaly and Bouguila (2013)

incorporate feature weighting into clustering under a fully Bayesian approach, albeit for continu-

ous data.

6 Discussion

Bernoulli mixture models (BMMs) are immensely useful for clustering binary data when the

number of clusters is or is not known. Classical approaches make use of maximum likelihood

methods to estimate the parameters of the BMM and capture the most-likely partition of X .
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Bayesian approaches arrive at comparable partitions and provide an added flexibility in their abil-

ity to incorporate prior information and prevent overfitting, but face computational hurdles due to

the label-switching problem and potentially slow MCMC convergence.

Despite these issues, recent literature in clustering with mixture models has focused almost

exclusively on Bayesian methods for their generality and power. A Bayesian method semi-related

to those presented here is Bayesian Hierarchical Clustering (BHC) (Heller and Ghahramani, 2005;

Heard et al., 2006). BHC selects a “best” partition Z of X as one that maximizes the posterior

distribution and is chosen from partitions developed by starting with N individual clusters and

sequentially merging the most alike observations together until only one cluster is produced. How-

ever, for BHC and the other Bayesian methods discussed up to this point which estimate Z via its

posterior mode, it is stressed that “the maximum a posteriori partition has no objective status as

a best estimate of the clustering of the data" as it is never made explicit what constitutes a “best”

partition (Lau and Green, 2007). To avoid this criticism, Lau and Green (2007) develop a Bayesian

method that seeks a partition of the data that minimizes the expected pairwise coincidence loss

function responsible for penalizing partitions that group unlike observations together. Though par-

ticularly computationally demanding, the method it is guaranteed to arrive at an optimal partition

Z of the dataX .

Of course, while all these methods have their own pros and cons, as do those described in Sec-

tions 3 & 4, the increasing prevalance of high-dimensional binary data suggests the most impor-

tant direction for clustering procedures involves the incorporation of feature weighting (Section 5).

Only very recent attempts have placed feature weighting in a fully Bayesian estimation setting

(Elguebaly and Bouguila, 2013), but none so far in the particular case of binary data. The marriage

of fully Bayesian estimation and feature weighting may prove extremely effective in clustering

binary data.
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Algorithm 4: Allocation Sampler (Nobile and Fearnside, 2007)

1 initialize Set t← 1. Choose starting values K(0) and Z(0) = (Z
(0)
1 , . . . ,Z

(0)
N ).

2 repeat

3 Assign K(t) ← K(t−1) and Z(t) ← Z(t−1)

4 Randomly select move from {AE,GS,M1,M2,M3}

5 if AE then attempt to change K(t) with absorption/ejection Metropolis-Hastings

6 Choose a component k at random to eject from / absorb from.

7 if ejection then

8 Create a (K(t) + 1)-th component k∗ and let K ′ = K(t) + 1

9 Obtain Z ′ by reassigning vectors from k to k∗ based on draw from Beta(a, a)

10 Assign K(t) ← K
′ and Z(t) ← Z

′ with probability min{1, R}, R as in (21)

11 else absorption

12 Choose another component k∗ to absorb into and let K = K(t) − 1

13 Obtain re-allocations Z by reassigning all vectors in k to k∗

14 Assign K(t) ← K and Z(t) ← Z with probability min{1, 1/R}, R as in (21)

15 else do not attempt to change K(t)

16 if GS then change Z(t)
n in Z(t) one-at-a-time with systematic sweep Gibbs sampler

17 for n = 1, . . . , N do

18 Generate Z ′n from its full conditional distribution and assign Z(t)
n ← Z

′
n

19 else change Z(t)
n in Z(t) simultaneously with Metropolis-Hastings M1, M2, or M3

20 Randomly select two distinct k1, k2 from {1, . . . , K(t)}

21 Perform M1, M2, or M3 (whichever was chosen) to obtain new allocation Z ′

22 Assign Z(t) ← Z
′ with probability min{1, R}, R as in (22)

23 Assign t← t+ 1

24 until t is suitably large
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